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Bad events: 𝒜 = 𝐴1, 𝐴2, … , 𝐴𝑛  

𝐴𝑖 depends on the variables in vbl 𝐴i ⊆ 𝒫 = {𝑃1, 𝑃2, … , 𝑃𝑚} 

 

If 

1. 𝐴𝑖 shares variables with at most d other events 

2. Pr 𝐴𝑖 ≤ 𝑝  

3. 𝑒𝑝 𝑑 + 1 < 1  

then Pr( 𝑛𝑜 𝐴𝑖  𝑜𝑐𝑐𝑢𝑟𝑠) > 0 

Lovász Local Lemma (LLL) 

LLL in Distributed Model 

Needs stronger LLL condition: 𝑒𝑝𝑑2 < 1 

Running time: 𝑂(log1/𝑒𝑝𝑑2 𝑛) 

 

Get an initial sample for each 𝑃𝑖 ∈ 𝒫 

Assume each node has an unique ID, repeat the following for 
𝑂(log1/𝑒𝑝𝑑2 𝑛) times: 

 

1. Let ℐ = 𝐴 ∈ 𝐹  𝐴 has the smallest ID among the  
neighbors of 𝐴 that are in ℱ} 

 

2. Resample every variable in  vbl(𝐴)𝐴∈ℐ  

Our Algorithm (I) 

Under the same LLL condition with MT: 𝑒𝑝 𝑑 + 1 < 1 

Running time: 𝑂(log2 𝑑 ⋅ log1/𝑒𝑝(𝑑+1) 𝑛) 

 

Replace step 1. by computing  the weak MIS ℐ such that each 
vertex belongs to the neighborhood of ℐ with probability at least 
1 − Ω(1/𝑑) 

A weak-MIS can be computed in 𝑂(log2 𝑑) rounds 

 

 

 

 

 

 

 

 

 

 

Our Algorithm (II) 

Applications: Distributed Graph Coloring 

• Frugal Coloring:  
A 𝛽-frugal coloring is one in which each color appears at most 
𝛽 times in the neighborhood of any vertex. We gave algorithms 
for obtaining 

1. 𝑂(log2 Δ / log log Δ)-frugal, (Δ + 1) coloring in 𝑂(log 𝑛) 
rounds.  
[PS08] 𝑂(log Δ ⋅ log n / log log n)-frugal, (Δ + 1) coloring in 𝑂(log 𝑛) rounds. 

2. 𝛽-frugal, 𝑂(Δ1+1/𝛽) coloring in 𝑂(log 𝑛 ⋅ log2 Δ) rounds. 
[HMR 97] proved the existence of the coloring. 

 

• Girth 4 and 5: 

1. 4 + 𝜖 Δ/log Δ coloring triangle-free graphs in 𝑂(log 𝑛) 
rounds. 
[PS13] gave an algorithm that runs in 𝑂(log1+𝑜(1) 𝑛) rounds. 

2. 1 + 𝜖 Δ/log Δ coloring girth-5 graphs in 𝑂(log 𝑛) rounds. 
[PS13] gave an algorithm that runs in 𝑂(log1+𝑜(1) 𝑛) rounds. 

 

• Edge Coloring: 
1 + 𝜖 Δ edge-coloring in 𝑂(log 𝑛) rounds 

[DGP97] 1 + 𝜖 Δ edge-coloring in 𝑂(log 𝑛) rounds for Δ ≫ log 𝑛 

 

• List Coloring: 
Every vertex has a list of 1 + 𝜖 𝐷 colors such that each color 
appears in at most 𝐷 lists in the neighborhood of any vertex. 
We gave an algorithm to obtain such a coloring in 

𝑂 log𝐷 + log𝐷 𝑛 +
log log 𝐷

𝐷
⋅ log 𝑛 = 𝑂(log 𝑛) rounds 

[RS02] proved the existence of the coloring 

 

• Defective Coloring: 
A k-defective coloring is one in which a vertex may share its 
color up to 𝑘 neighbors. For any 𝑘 = Ω log Δ , we gave an 

algorithm to obtain a 𝑘-defective 𝑂(Δ/𝑘)-coloring in 𝑂
log 𝑛

𝑘
 

rounds. 
[BE] 𝑂(log 𝑛)-defective 𝑂(Δ/ log 𝑛)-coloring in O(1) rounds 
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Each processor is associated with a bad event.  
The dependency graph is the underlying network. 

Randomness from weak MIS 
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Distributed Algorithms for the Lovász Local Lemma and Graph Coloring 

Goal: Processors computes and agrees on 𝒫 such that no bad 
events occur  

𝐴1 

𝐴2 

𝐴3 

𝐴4 

𝐴5 

𝐴6 

𝐴7 

Moser and Tardos’ Resampling Algorithm [MT10] 

Repeat the following for 𝑂(log1/𝑒𝑝(𝑑+1) 𝑛) times: 

 

1. Compute a maximal independent set (MIS) ℐ in the graph 
induced by ℱ 

 

2. Resample every variable in  vbl(𝐴)𝐴∈ℐ  

Get an initial sample for each 𝑃𝑖 ∈ 𝒫 

ℱ: set of bad nodes 

Total rounds: 𝑂(MIS 𝑛, 𝑑 ⋅ log1/𝑒𝑝(𝑑+1) 𝑛) 
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Key observation: At round 𝑖 > 1, if A is resampled, then an event 
in the 2-neighborhood of A must have been resampled at round 
𝑖 − 1 
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2-witness tree: In the reverse order (break ties arbitrarily for 
events sampled in the same rounds), attach each resampled event 
to the deepest node in the current tree with distance ≤ 2 

5 

2 3 

From the key observation, if there exists bad events after k rounds 
of resampling, then there is a 2-witness tree of size at least k 

 

By modifying the Galton-Walton process from MT to generate  2-
witness trees, we get 

Pr(∃2−witness tree of size ≥ 𝑘) ≤ 𝑛 𝑒𝑝𝑑2 𝑘 

Set 𝑘 = 𝑂(log1/𝑒𝑝𝑑2 𝑛) 

Distributed Model 

Each round, each processor: 

1. Receives messages from its neighbors 

2. Perform some computation 

3. Send messages to its neighbors 

 

Minimize #rounds to compute a function 

e.g. vertex coloring 

 

Goal: each processor output a color 
such that adjacent processors receive 
different colors 

MIS 𝑛, 𝑑 :  

[Luby86] 𝑂 log 𝑛  

[Kuhn09,BE09] 𝑂(𝑑 + log∗ 𝑛) larger message 
complexity [BEPS12] 𝑂(log 𝑑 ⋅ log 𝑛) 

Lower Bound[KMW10] Ω(min{ log 𝑛 , log 𝑑}) 

If there exists bad events after 𝑘 rounds of weak MIS resampling, 
there exists a witness tree of size 𝑘/2 with probability at least 

1/ 𝑑 + 1 𝑘/2 

Conclusion: No bad events happens after 
𝑂(max(log𝑑+1 𝑛 , log1/𝑒𝑝(𝑑+1) 𝑛)) rounds w.h.p. 

 

This term dominates, because if 𝑑 + 1 < 1/𝑒𝑝(𝑑 + 1), then 
Algorithm(I) is applicable 

 

Pr(∃witness tree of size ≥ 𝑘/2) ≤ 𝑛 𝑒𝑝(𝑑 + 1) 𝑘/2 

Randomness from Resampling 

Lower Bound 

[Linial92] Ω(log∗ 𝑛) lower bound on 𝑂(1)-coloring a ring 

Reduce coloring a ring to constructive LLL 

10-coloring Dependency graph 

Each vertex u choose a 
color uniformly at 
random 

𝐴𝑢𝑣: u and v has the 
same color 

Pr(𝐴𝑢𝑣) ≤ 1/10  

𝑒𝑝 𝑑 + 1 =
3𝑒

10
< 1  

Round 𝑖 

𝑣 𝐴𝑢𝑣 𝑢 

Round 𝑖 − 1 

Each vertex u choose 
a color uniformly at 
random Dependency graph 

𝐴𝑢: More than k 
neighbors having same 
color with u 

𝐴𝑢 

𝑑 ≤ Δ2  

Chernoff Bound:  
Pr(𝐴𝑢) ≤ 𝑒

−𝑘/6  

𝑒𝑝𝑑2 = 𝑒−Ω(𝑘) for 𝑘 = Ω(log Δ) 

Algorithm(I) can be simulated on 
the dependency graph with 𝑂 1  
overhead  

Total rounds: 𝑂 log1/𝑒𝑝𝑑2 𝑛 =

𝑂((log 𝑛)/𝑘) rounds 
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