Distributed Algorithms for the Lovász Local Lemma and Graph Coloring Kai-Min Chung¹, Seth Pettie², Hsin-Hao Su² 1. Cornell University 2. University of Michigan and MADALGO

www.PosterPresentations.com

From the key observation, if there exists bad events after k rounds of resampling, then there is a 2-witness tree of size at least k

By modifying the Galton-Walton process from MT to generate 2-

 $\Pr(\exists 2 \text{-witness tree of size} \ge k) \le n(epd^2)^k$

Our Algorithm (II)

Under the same LLL condition with MT: ep(d + 1) < 1Running time: $O(\log^2 d \cdot \log_{1/ep(d+1)} n)$

Replace step 1. by computing the weak MIS \mathcal{I} such that each vertex belongs to the neighborhood of \mathcal{I} with probability at least

A weak-MIS can be computed in $O(\log^2 d)$ rounds

Randomness from weak MIS

If there exists bad events after k rounds of weak MIS resampling, there exists a witness tree of size k/2 with probability at least

Randomness from Resampling

Pr(\exists witness tree of size $\geq k/2$) $\leq n(ep(d + 1))^{k/2}$

Conclusion: No bad events happens after $O(\max(\log_{d+1} n, \log_{1/ep(d+1)} n))$ rounds w.h.p.

This term dominates, because if d + 1 < 1/ep(d + 1), then

Lower Bound

[Linial92] $\Omega(\log^* n)$ lower bound on O(1)-coloring a ring Reduce coloring a ring to constructive LLL

> Each vertex *u* choose a color uniformly at random A_{uv} : u and v has the same color $\Pr(A_{uv}) \le 1/10$ $ep(d+1) = \frac{3e}{10} < 1$

Dependency graph

List Coloring: Every vertex has a list of $(1 + \epsilon)D$ colors such that each color appears in at most D lists in the neighborhood of any vertex. We gave an algorithm to obtain such a coloring in $O\left(\log D + \log_D n + \frac{\log \log D}{\sqrt{D}} \cdot \log n\right) = O(\log n)$ rounds [RS02] proved the existence of the coloring

Defective Coloring: A *k*-defective coloring is one in which a vertex may share its color up to k neighbors. For any $k = \Omega(\log \Delta)$, we gave an algorithm to obtain a k-defective $O(\Delta/k)$ -coloring in $O\left(\frac{\log n}{k}\right)$ rounds. [BE] $O(\log n)$ -defective $O(\Delta / \log n)$ -coloring in O(1) rounds

Each vertex *u* choose a color uniformly at random

Comput. Sci., 203(2):225-251.

Applications: Distributed Graph Coloring

Frugal Coloring:

A β -frugal coloring is one in which each color appears at most β times in the neighborhood of any vertex. We gave algorithms for obtaining

1. $O(\log^2 \Delta / \log \log \Delta)$ -frugal, $(\Delta + 1)$ coloring in $O(\log n)$ rounds.

[PS08] $O(\log \Delta \cdot \log n / \log \log n)$ -frugal, $(\Delta + 1)$ coloring in $O(\log n)$ rounds. 2. β -frugal, $O(\Delta^{1+1/\beta})$ coloring in $O(\log n \cdot \log^2 \Delta)$ rounds. [HMR 97] proved the existence of the coloring.

Girth 4 and 5:

1. $(4 + \epsilon)\Delta/\log \Delta$ coloring triangle-free graphs in $O(\log n)$ rounds.

[PS13] gave an algorithm that runs in $O(\log^{1+o(1)} n)$ rounds.

2. $(1 + \epsilon)\Delta/\log \Delta$ coloring girth-5 graphs in $O(\log n)$ rounds. [PS13] gave an algorithm that runs in $O(\log^{1+o(1)} n)$ rounds.

Edge Coloring:

 $(1 + \epsilon)\Delta$ edge-coloring in $O(\log n)$ rounds

[DGP97] $(1 + \epsilon)\Delta$ edge-coloring in $O(\log n)$ rounds for $\Delta \gg \log n$

color with *u* $d \leq \Delta^2$ **Chernoff Bound** $\Pr(A_u) \le e^{-k/6}$ $epd^2 = e^{-\Omega(k)}$ for $k = \Omega(\log \Delta)$ Algorithm(I) can be simulated on

 A_{μ} : More than k

neighbors having same

the dependency graph with O(1)overhead Total rounds: $O(\log_{1/epd^2} n) =$

 $O((\log n)/k)$ rounds

Dependency graph

References

[BE] L. Barenboim and M. Elkin. Distributed Graph Coloring. Manuscript.

[BE10] L. Barenboim and M. Elkin. Distributed ($\Delta + 1$)-coloring in Linear (in Δ) time. STOC '09, 111-120. [BEPS12] L. Barenboim, M. Elkin, S. Pettie, J. Schneider. The Locality of Distributed Symmetry Breaking. FOCS '12, 321-330.

[DGP97] D. Dubhashi, D. Grable, and A. Panconesi. Near-Optimal, Distributed Edge Colouring via the Nibble Method. *Theor.* [HMR97] H. Hind, M. Molloy, and B. Reed. Colouring a Graph Frugally. *Combinatorica*, 17(4):469-482.

[Kuhn09] Fabian Kuhn. Weak Graph Colorings: Distributed Algorithms and Applications. SPAA '09, 138-144.

[KMW10] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Local Computation: Lower and Upper Bounds. *CoRR*, abs/1011.5470. [Linial92] N. Linial. Locality in Distributed Graph Algorithms. SIAM J. Comput., 21(1):193-201

[Luby86] M. Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM J. Comput., 15(4): 1036-1053. [MT10] Robin A. Moser and Gábor Tardos. A Constructive of the General Lovász Local Lemma. J. ACM, 57(2):11:1-11:15. [PS08] S. Pemmaraju and A. Srinivasan. The Randomized Coloring Procedure with Symmetry-Breaking. *ICALP '08*, 306-319.

[PS13] S. Pettie, H. Su. Fast Distributed Coloring Algorithms for Triangle-Free Graphs. *ICALP '13*, 687-699. [RS02] B Reed and B. Sudakov. Asymptotically the List Colouring Constants are 1. J. Combin. Theroy, Series B, 86(1):27-37