
QUICK DESIGN GUIDE
(--THIS SECTION DOES NOT PRINT--)

This PowerPoint 2007 template produces a 36x48

inch professional poster. You can use it to create

your research poster and save valuable time placing

titles, subtitles, text, and graphics.

We provide a series of online tutorials that will

guide you through the poster design process and

answer your poster production questions.

To view our template tutorials, go online to

PosterPresentations.com and click on HELP DESK.

When you are ready to print your poster, go online

to PosterPresentations.com.

Need Assistance? Call us at 1.866.649.3004

Object Placeholders

Using the placeholders

To add text, click inside a placeholder on the poster

and type or paste your text. To move a placeholder,

click it once (to select it). Place your cursor on its

frame, and your cursor will change to this symbol

Click once and drag it to a new location where you

can resize it.

Section Header placeholder

Click and drag this preformatted section header

placeholder to the poster area to add another

section header. Use section headers to separate

topics or concepts within your presentation.

Text placeholder

Move this preformatted text placeholder to the

poster to add a new body of text.

Picture placeholder

Move this graphic placeholder onto your poster, size

it first, and then click it to add a picture to the

poster.

RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

Student discounts are available on our Facebook page.

Go to PosterPresentations.com and click on the FB icon.

QUICK TIPS
(--THIS SECTION DOES NOT PRINT--)

This PowerPoint template requires basic PowerPoint

(version 2007 or newer) skills. Below is a list of

commonly asked questions specific to this template.

If you are using an older version of PowerPoint some

template features may not work properly.

Template FAQs

Verifying the quality of your graphics

Go to the VIEW menu and click on ZOOM to set your

preferred magnification. This template is at 100%

the size of the final poster. All text and graphics will

be printed at 100% their size. To see what your

poster will look like when printed, set the zoom to

100% and evaluate the quality of all your graphics

before you submit your poster for printing.

Modifying the layout

This template has four different

column layouts. Right-click

your mouse on the background

and click on LAYOUT to see the

 layout options. The columns in

the provided layouts are fixed and cannot be moved

but advanced users can modify any layout by going

to VIEW and then SLIDE MASTER.

Importing text and graphics from external sources

TEXT: Paste or type your text into a pre-existing

placeholder or drag in a new placeholder from the

left side of the template. Move it anywhere as

needed.

PHOTOS: Drag in a picture placeholder, size it first,

click in it and insert a photo from the menu.

TABLES: You can copy and paste a table from an

external document onto this poster template. To

adjust the way the text fits within the cells of a

table that has been pasted, right-click on the table,

click FORMAT SHAPE then click on TEXT BOX and

change the INTERNAL MARGIN values to 0.25.

Modifying the color scheme

To change the color scheme of this template go to

the DESIGN menu and click on COLORS. You can

choose from the provided color combinations or

create your own.

© 2013 PosterPresentations.com
 2117 Fourth Street , Unit C
 Berkeley CA 94710
 posterpresenter@gmail.com

Bad events: 𝒜 = 𝐴1, 𝐴2, … , 𝐴𝑛

𝐴𝑖 depends on the variables in vbl 𝐴i ⊆ 𝒫 = {𝑃1, 𝑃2, … , 𝑃𝑚}

If

1. 𝐴𝑖 shares variables with at most d other events

2. Pr 𝐴𝑖 ≤ 𝑝

3. 𝑒𝑝 𝑑 + 1 < 1

then Pr(𝑛𝑜 𝐴𝑖 𝑜𝑐𝑐𝑢𝑟𝑠) > 0

Lovász Local Lemma (LLL)

LLL in Distributed Model

Needs stronger LLL condition: 𝑒𝑝𝑑2 < 1

Running time: 𝑂(log1/𝑒𝑝𝑑2 𝑛)

Get an initial sample for each 𝑃𝑖 ∈ 𝒫

Assume each node has an unique ID, repeat the following for
𝑂(log1/𝑒𝑝𝑑2 𝑛) times:

1. Let ℐ = 𝐴 ∈ 𝐹 𝐴 has the smallest ID among the
neighbors of 𝐴 that are in ℱ}

2. Resample every variable in vbl(𝐴)𝐴∈ℐ

Our Algorithm (I)

Under the same LLL condition with MT: 𝑒𝑝 𝑑 + 1 < 1

Running time: 𝑂(log2 𝑑 ⋅ log1/𝑒𝑝(𝑑+1) 𝑛)

Replace step 1. by computing the weak MIS ℐ such that each
vertex belongs to the neighborhood of ℐ with probability at least
1 − Ω(1/𝑑)

A weak-MIS can be computed in 𝑂(log2 𝑑) rounds

Our Algorithm (II)

Applications: Distributed Graph Coloring

• Frugal Coloring:
A 𝛽-frugal coloring is one in which each color appears at most
𝛽 times in the neighborhood of any vertex. We gave algorithms
for obtaining

1. 𝑂(log2 Δ / log log Δ)-frugal, (Δ + 1) coloring in 𝑂(log 𝑛)
rounds.
[PS08] 𝑂(log Δ ⋅ log n / log log n)-frugal, (Δ + 1) coloring in 𝑂(log 𝑛) rounds.

2. 𝛽-frugal, 𝑂(Δ1+1/𝛽) coloring in 𝑂(log 𝑛 ⋅ log2 Δ) rounds.
[HMR 97] proved the existence of the coloring.

• Girth 4 and 5:

1. 4 + 𝜖 Δ/log Δ coloring triangle-free graphs in 𝑂(log 𝑛)
rounds.
[PS13] gave an algorithm that runs in 𝑂(log1+𝑜(1) 𝑛) rounds.

2. 1 + 𝜖 Δ/log Δ coloring girth-5 graphs in 𝑂(log 𝑛) rounds.
[PS13] gave an algorithm that runs in 𝑂(log1+𝑜(1) 𝑛) rounds.

• Edge Coloring:
1 + 𝜖 Δ edge-coloring in 𝑂(log 𝑛) rounds

[DGP97] 1 + 𝜖 Δ edge-coloring in 𝑂(log 𝑛) rounds for Δ ≫ log 𝑛

• List Coloring:
Every vertex has a list of 1 + 𝜖 𝐷 colors such that each color
appears in at most 𝐷 lists in the neighborhood of any vertex.
We gave an algorithm to obtain such a coloring in

𝑂 log𝐷 + log𝐷 𝑛 +
log log 𝐷

𝐷
⋅ log 𝑛 = 𝑂(log 𝑛) rounds

[RS02] proved the existence of the coloring

• Defective Coloring:
A k-defective coloring is one in which a vertex may share its
color up to 𝑘 neighbors. For any 𝑘 = Ω log Δ , we gave an

algorithm to obtain a 𝑘-defective 𝑂(Δ/𝑘)-coloring in 𝑂
log 𝑛

𝑘

rounds.
[BE] 𝑂(log 𝑛)-defective 𝑂(Δ/ log 𝑛)-coloring in O(1) rounds

References

[BE] L. Barenboim and M. Elkin. Distributed Graph Coloring. Manuscript.

[BE10] L. Barenboim and M. Elkin. Distributed (Δ + 1)-coloring in Linear (in Δ) time. STOC ’09, 111-120.

[BEPS12] L. Barenboim, M. Elkin, S. Pettie, J. Schneider. The Locality of Distributed Symmetry Breaking. FOCS ’12, 321-330.

[DGP97] D. Dubhashi, D. Grable, and A. Panconesi. Near-Optimal, Distributed Edge Colouring via the Nibble Method. Theor.

Comput. Sci., 203(2):225-251.

[HMR97] H. Hind, M. Molloy, and B. Reed. Colouring a Graph Frugally. Combinatorica, 17(4):469-482.

[Kuhn09] Fabian Kuhn. Weak Graph Colorings: Distributed Algorithms and Applications. SPAA ’09, 138-144.

[KMW10] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Local Computation: Lower and Upper Bounds. CoRR, abs/1011.5470.

[Linial92] N. Linial. Locality in Distributed Graph Algorithms. SIAM J. Comput., 21(1):193-201

[Luby86] M. Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM J. Comput., 15(4): 1036-1053.

[MT10] Robin A. Moser and Gábor Tardos. A Constructive of the General Lovász Local Lemma. J. ACM, 57(2):11:1-11:15.

[PS08] S. Pemmaraju and A. Srinivasan. The Randomized Coloring Procedure with Symmetry-Breaking. ICALP ’08, 306-319.

[PS13] S. Pettie, H. Su. Fast Distributed Coloring Algorithms for Triangle-Free Graphs. ICALP ’13, 687-699.

[RS02] B Reed and B. Sudakov. Asymptotically the List Colouring Constants are 1. J. Combin. Theroy, Series B, 86(1):27-37

Each processor is associated with a bad event.
The dependency graph is the underlying network.

Randomness from weak MIS

1. Cornell University 2. University of Michigan and MADALGO

Kai-Min Chung1, Seth Pettie2, Hsin-Hao Su2

Distributed Algorithms for the Lovász Local Lemma and Graph Coloring

Goal: Processors computes and agrees on 𝒫 such that no bad
events occur

𝐴1

𝐴2

𝐴3

𝐴4

𝐴5

𝐴6

𝐴7

Moser and Tardos’ Resampling Algorithm [MT10]

Repeat the following for 𝑂(log1/𝑒𝑝(𝑑+1) 𝑛) times:

1. Compute a maximal independent set (MIS) ℐ in the graph
induced by ℱ

2. Resample every variable in vbl(𝐴)𝐴∈ℐ

Get an initial sample for each 𝑃𝑖 ∈ 𝒫

ℱ: set of bad nodes

Total rounds: 𝑂(MIS 𝑛, 𝑑 ⋅ log1/𝑒𝑝(𝑑+1) 𝑛)

2

1

6

7

5

4

3

2

1

6

7

5

4

3

2

1

6

7

5

4

3

Key observation: At round 𝑖 > 1, if A is resampled, then an event
in the 2-neighborhood of A must have been resampled at round
𝑖 − 1

2

1

6

7

5

4

3

2

1

6

7

5

4

3

2-witness tree: In the reverse order (break ties arbitrarily for
events sampled in the same rounds), attach each resampled event
to the deepest node in the current tree with distance ≤ 2

5

2 3

From the key observation, if there exists bad events after k rounds
of resampling, then there is a 2-witness tree of size at least k

By modifying the Galton-Walton process from MT to generate 2-
witness trees, we get

Pr(∃2−witness tree of size ≥ 𝑘) ≤ 𝑛 𝑒𝑝𝑑2 𝑘

Set 𝑘 = 𝑂(log1/𝑒𝑝𝑑2 𝑛)

Distributed Model

Each round, each processor:

1. Receives messages from its neighbors

2. Perform some computation

3. Send messages to its neighbors

Minimize #rounds to compute a function

e.g. vertex coloring

Goal: each processor output a color
such that adjacent processors receive
different colors

MIS 𝑛, 𝑑 :

[Luby86] 𝑂 log 𝑛

[Kuhn09,BE09] 𝑂(𝑑 + log∗ 𝑛) larger message
complexity [BEPS12] 𝑂(log 𝑑 ⋅ log 𝑛)

Lower Bound[KMW10] Ω(min{ log 𝑛 , log 𝑑})

If there exists bad events after 𝑘 rounds of weak MIS resampling,
there exists a witness tree of size 𝑘/2 with probability at least

1/ 𝑑 + 1 𝑘/2

Conclusion: No bad events happens after
𝑂(max(log𝑑+1 𝑛 , log1/𝑒𝑝(𝑑+1) 𝑛)) rounds w.h.p.

This term dominates, because if 𝑑 + 1 < 1/𝑒𝑝(𝑑 + 1), then
Algorithm(I) is applicable

Pr(∃witness tree of size ≥ 𝑘/2) ≤ 𝑛 𝑒𝑝(𝑑 + 1) 𝑘/2

Randomness from Resampling

Lower Bound

[Linial92] Ω(log∗ 𝑛) lower bound on 𝑂(1)-coloring a ring

Reduce coloring a ring to constructive LLL

10-coloring Dependency graph

Each vertex u choose a
color uniformly at
random

𝐴𝑢𝑣: u and v has the
same color

Pr(𝐴𝑢𝑣) ≤ 1/10

𝑒𝑝 𝑑 + 1 =
3𝑒

10
< 1

Round 𝑖

𝑣 𝐴𝑢𝑣 𝑢

Round 𝑖 − 1

Each vertex u choose
a color uniformly at
random Dependency graph

𝐴𝑢: More than k
neighbors having same
color with u

𝐴𝑢

𝑑 ≤ Δ2

Chernoff Bound:
Pr(𝐴𝑢) ≤ 𝑒

−𝑘/6

𝑒𝑝𝑑2 = 𝑒−Ω(𝑘) for 𝑘 = Ω(log Δ)

Algorithm(I) can be simulated on
the dependency graph with 𝑂 1
overhead

Total rounds: 𝑂 log1/𝑒𝑝𝑑2 𝑛 =

𝑂((log 𝑛)/𝑘) rounds

http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts

